

TZ-60

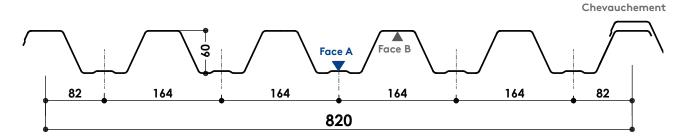
PROFIL NERVURÉ POUR TOITURES

- Profil nervuré en tôle d'acier structurel formé à froid, grande qualité certifiée.
- Bardages métalliques de toiture pour construction industrielle, commerciale et installations sportives.
- Produit avec marquage CE selon les normes EN 14782 et EN 1090.
- Largeur utile de 0,82 m par chevauchement et longueurs de fabrication jusqu'à 12,8 m.
- Nouveau design optimisé avec haute performance structurale, ce qui permet de plus grandes portées entre les pannes.

TZ-60 Profil nervuré pour toitures

DESCRIPTION ET APPLICATIONS

Profil nervuré en tôle d'acier de grande qualité, formé à froid


Apte pour des systèmes acoustiques, avec des perforations R5T13 de Kingspan.

Bardages métalliques de toiture pour construction industrielle, commerciale et installations sportives.

En fonction de la configuration, on peut atteindre des portées entre appuis jusqu'à 5,0 m et des charges jusqu'à 894 daN/m² en portée simple.

CARACTÉRISTIQUES DE FABRICATION

Largeur utile		820 mm				
Longueur maximum de fabri	cation	12,8 m				
Type d'acier		Standard S220GD (autres types d'acier sur demande)				
Épaisseurs		0,7 /0,8 /1,0 /1,2 mm				
Revêtements	Standard	Galvanisation Z275 Galvanisé et laqué avec du polyester de silicone 25 micra				
	Spécial	HD, HDS, HDX, PVDF, PET				

Certificats tôle en acier

Acier employé conformément à la norme EN 10346 (galvanisé) et à la norme EN 10169 (revêtements organiques).

Certificat du profilé TZ-60

Marquage CE conformément à les normes EN 14782:2006 et EN 1090-1:2009+A1:2011.

Profil nervuré pour toitures **TZ-60**

DONNÉES TECHNIQUES DU PROFIL

ÉPAISSEUR	POII	DS	MOMENT INERTIE	MODULE RÉSISTANT	MOMENT DE FLEXION		
(mm)	(kg/ml)	(kg/m²)	I (cm⁴/m)	Wmin (cm³/m)	Mf (kgf·m)		
0,7	6,86	8,36	43,29	13,70	219		
0,8	7,85	9,57	51,38	16,74	286		
1,0	9,81	11,96	67,23	22,26	356		
1,2	11,78	14,36	83,44	26,92	431		

CHARGES DE PRESSION MAXIMALES ADMISSIBLES (daN/m²)

PORTÉE ENTRE APPUIS (m)

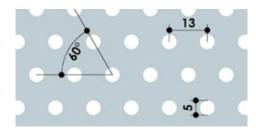
e (mm)	APPUIS	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,25	4,50	4,75	5,00
	$\Lambda = \Lambda$	478	345	255	193	149	117	92	74	60	49	40	33	27
0,7	ΔΔΔ	1160	812	590	445	350	278	225	183	151	126	105	89	75
	ΔΔΔΔ	911	637	464	357	279	221	177	144	118	98	82	69	58
	$\Lambda = \Lambda$	559	400	295	222	170	133	106	85	68	56	46	38	31
0,8	Δ Δ Δ	1357	951	690	518	405	322	259	210	173	143	120	101	86
	ΔΔΔΔ	1066	746	541	414	322	254	204	165	135	112	93	78	66
	$\wedge \wedge \wedge$	725	512	374	280	214	167	132	106	85	69	57	47	39
1,0	ΔΔΔ	1760	1233	896	670	519	409	328	265	218	180	150	127	107
	Δ Δ Δ	1383	968	702	530	410	322	257	207	169	140	117	98	82
	$\Lambda $	894	626	454	339	258	200	158	126	102	83	68	56	46
1,2	Δ Δ Δ	2168	1519	1104	825	635	498	397	320	262	216	180	151	128
	Δ Δ Δ	1703	1192	865	649	498	390	310	250	203	167	139	117	98

 $1 daN/m^2 \approx 1 kp/m^2$

N.B.:

- Les valeurs indiquées dans le tableau sont des charges admissibles sans augmentation, qui doivent être comparées à la somme des charges caractéristiques (sans augmentation) de chaque projet.
- Tables calculées pour la flèche maximale admissible : L/200, où L est la distance entre les pannes de support.
- Tableaux valables uniquement pour le pré-dimensionnement. Le concepteur doit effectuer le calcul de structure selon les réglementations en vigueur dans chaque pays.
- Pour la vérification de la résistance selon EN 1993-1-3, ou pour d'autres cas de charge, contacter notre service technique. Kingspan | Teczone décline expressément toute responsabilité découlant de l'utilisation de ces tableaux.

TZ-60 Profil nervuré pour toitures



PERFORATIONS POUR SOLUTIONS ACOUSTIQUES

Kingspan | Teczone peut fournir ce profil avec **perforation uniforme**, par exemple type R5T13, avec des trous de Ø 5mm, 13 mm entre centres, en quinconce à 60°, avec une surface perforée de 14%.

Coefficient d'absorption $\alpha_{_{\rm w}}$ = 0,85 selon la norme EN ISO 354:2004, pour système sandwich sur chantier.

D'autres types de perforations uniformes sont également disponibles.

CHOIX DE REVÊTEMENTS DISPONIBLES

Pour garantir la durabilité maximale des profilés TZ, Kingspan | Teczone dispose d'une large gamme de revêtements performants et à la pointe de la technologie, sélectionnables en fonction du type d'environnement d'installation :

		Е	NVIRO	NNEME	ENVIRONNEMENT INTÉRIEUR							
	RURAL	URB.		MARIN			RÉSISTANCE		ENVIRONNE- MENTS SAINS		ENVIRON- NEMENTS	RÉSISTANCE
	SANS POLLUTION	Modéré	Sévère	Entre 3 et 20 km	Catégorie Corrosion Externe Catégorie Corrosion Corrosi		UV	Humidité faible	Humidité moyenne	AGRESSIFS ET/OU TRÈS HUMIDES	Catégorie Corrossion Intérieur	
Polyester 25µ	V	\checkmark	!	i	X	×	!	ļ	V	V	Ai3 ⁽²⁾	CPI3
HDS 35μ	$\overline{\checkmark}$	\checkmark	!	V	!	!	RC4	RUV4	V	V	Ai3	CPI4
PVDF 35μ	V	\checkmark	!	V	!	!	RC4	RUV4	V	V	Ai3	CPI4
HDX 55μ	V	\checkmark	V	V	V	!	RC5	RUV4	V	V	Ai3	CPI4
PET 50μ	×	×	×	×	×	×	NA	NA	V	V	Ai5	CPI5

- Revêtement adéquat
- Revêtement inadéguat
- NA Non applicable
- ! Consulter Teczone

- (1) Pour des distances < 300 m, consulter.
- (2) Vérifiez les conditions.
- Tous les revêtements ne sont pas disponibles pour toutes les épaisseurs et couleurs de tôle. Consultez Teczone si vous avez besoin d'un revêtement non inclus dans le tableau.

QUALITÉ ET SÉCURITÉ

L'acier et ses revêtements métalliques et organiques sont exempts de SVHC ("Substances extrêmement préoccupantes"), conformément aux exigences du règlement européen REACH.

Nos systèmes de gestion de la qualité (ISO 9001), de gestion de l'environnement (ISO 14001) et de santé et sécurité au travail (ISO 45001) sont certifiés par AENOR et IQNet.

Teczone Española S.A.U. se réserve le droit de modifier le contenu de ce document sans avis préalable. Tous les efforts ont été déployés pour garantir l'exactitude du contenu de cette publication, mais Teczone Española S.A.U. et ses sociétés affiliées ne sont pas responsables des erreurs ou des informations pouvant être trompeuses. Les suggestions concernant l'utilisation finale ou l'application des produits ou les méthodes de travail sont purement informatives et Teczone Española S.A.U. et ses sociétés affiliées n'acceptent aucune responsabilité à cet égard.

Kingspan | Teczone España

c/Alcalde Martin Cobos, s/n | E - 09007 Burgos Tel. +34 947 483 700 | Fax. +34 947 483 803 teczone@teczone.es | www.teczone.es Kingspan | Teczone France

1 Place Sainte Ursule | F - 09100 - Pamiers
Tel. +33 561 609 996 | Fax. +33 561 675 820
teczone@teczone.fr | www.teczone.fr

